
Ectoplasm and superspace integration measures for 2D supergravity with four spinorial

supercurrents

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 095401

(http://iopscience.iop.org/1751-8121/43/9/095401)

Download details:

IP Address: 171.66.16.158

The article was downloaded on 03/06/2010 at 08:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/9
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 095401 (13pp) doi:10.1088/1751-8113/43/9/095401

Ectoplasm and superspace integration measures for
2D supergravity with four spinorial supercurrents

S James Gates Jr and Gabriele Tartaglino-Mazzucchelli

Center for String and Particle Theory, Department of Physics, University of Maryland,
College Park, MD 20742-4111, USA

E-mail: gatess@wam.umd.edu and gtm@umd.edu

Received 30 September 2009, in final form 13 January 2010
Published 15 February 2010
Online at stacks.iop.org/JPhysA/43/095401

Abstract
Building on a previous derivation of the local chiral projector for a two-
dimensional superspace with eight real supercharges, we provide the complete
density projection formula required for locally supersymmetrical theories in
this context. The derivation of this result is shown to be very efficient
using techniques based on the ectoplasmic construction of local measures in
superspace.

PACS numbers: 04.65.+e, 11.30.Pb

1. Introduction

Some years ago, a formulation of a 2D supergravity theory which included off-shell closure
of the local supersymmetry algebra with four real spinorial supercharges and a necessary
set of auxiliary fields was introduced into the literature [1]. In a subsequent development,
a proposal was made (called 'ectoplasm’ [2]) for a conceptual framework leading  to  efficient
derivations  of  local  superspace  integration  measures  (density  projection  operators) 1.   In
addition, at about  the  same  time  there   was   put   forward   an   alternative   general   framework
for the derivation of density projection operators based on the use of superspace normal
coordinate expansions first introduced in [6] and rediscovered2 in [7]; see [15] for recent
reformulations and improvements of the normal coordinates techniques. The ectoplasm and
normal coordinates frameworks have been found to be closely related [16, 17].

Prior to the introduction of the ectoplasmic and normal coordinate approaches, the question
of how to construct local superspace supergravity densities had been approached by two other
and more cumbersome methods. Both of these can be seen in two books on the subject. In

1 A mathematical construction giving the formal bases for the ectoplasm methods can be found in the theory of
integration over surfaces in supermanifolds developed in [3–5].
2 Previous approaches for component reduction, ultimately related to normal coordinates expansions, can be found
in [8–14].
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the first, Superspace [18], an approach was taken to reproduce, at the level of superfields, a
Noether approach thus leading to the density projector. In the second Ideas [19], an approach
was taken to utilize the prepotential formulation of supergravity theory to derive the density
projector.

It has been argued from its inception that the ectoplasmic concept is not only extremely
efficient but also likely to apply to even more complicated theories such as string theory.
Though there was no such evidence at the time of the introduction of the ectoplasm approach,
later it was shown that integration measures in the ‘pure spinor formulation’ of superstrings
follow precisely from the extension of the ectoplasmic concept to this realm of theories [20].

The off-shell formulation of a 2D, N = 4 supergravity theory implies the existence
of a straightforward way to completely develop an efficient local integration theory for the
associated local Salam–Strathdee superspace. We will complete such a construction in the
current work by use of the ectoplasmic suggestion.

This paper is organized as follows. In section 2 we review the 2D, N = 4 supergravity
formulation of [1]. Section 3 is devoted to the presentation of a new super two-form multiplet.
In section 4 we make use of the ectoplasmic approach to build the density projector for the
2D, N = 4 supergravity of [1]; this is the main result of the paper. Section 5 collects some
conclusions. The paper includes two appendices. Appendix A contains the derivation of the
result of section 3. Then, appendix B is a collection of formulas used in the paper.

2. An off-shell 2D supergravity geometry with eight real local supersymmetries

In this section we review some aspects of the off-shell 2D, N = 4 minimal supergravity
multiplet first introduced in [1]. We focus on the curved superspace geometry underlining the
minimal supergravity that will be used in the computations of this paper.

The work in [1] showed there exists component fields (ea
m, ψa

αi, Aai
j , B,G,H) which

describe an off-shell 2D supergravity theory possessing eight real local (or four real spinorial)
supercharges. The previous list of component fields contains the graviton, the gravitini,
SU(2) connection, a complex scalar B, one real scalar G and one real pseudoscalar H. These
are the components associated with the following constraints on the 2D, N = 4 superspace
supergravity covariant derivative algebra3:

{∇αi,∇βj } = 2B[CαβCijM − (γ 3)αβY ij ], (1){∇α
i,∇β

j
} = 2B[CαβCijM − (γ 3)αβY ij ], (2)

{∇αi,∇β
j
} = 2iδi

j (γ c)αβ∇c + 2δi
jφα

γ (γ 3)γβM − 2φαβY i
j , (3)

[∇αi,∇b] = i

2
φα

γ (γ b)γ
β∇βi +

i

2
(γ 3γ b)α

βBCij∇β
j − i(γ 3γb)αβ�̄β

iM + i(γ b)αβ�̄β
jYi

j ,

(4)

[∇α
i,∇b

] = − i

2
φ̄α

γ (γb)γ
β∇β

i +
i

2
(γ 3γb)α

βBCij∇βj − i(γ 3γb)αβ�βiM − i(γ b)αβ�βjY i
j ,

(5)

[∇a,∇b] = − 1
2εab[(γ 3)α

β�αi∇βi + (γ 3)α
β�α

i∇β
i + RM + iF i

jYj
i], (6)

3 In the present paper we adopt the Lorentz and SU(2) notations collected in appendix A of [21] and consistent with
the conventions of [18].
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where

(B)∗ = B̄, (G)∗ = G, (H)∗ = H,
(
�α

i
)∗ = �̄αi, (7)

φαβ = CαβG + i(γ 3)αβH, (8)

φ̄αβ = (φαβ)∗ = −CαβG + i(γ 3)αβH = φβα. (9)

In writing these, we have corrected some coefficients that appear in the work of [21] in the
terms that appear in (3)–(5). These corrected coefficients do not affect (1) and (2). Thus, the
result in the work of [21] is unaffected by this change.

In the previous algebra, the covariant derivatives are ∇A = (∇a,∇αi,∇α
i
)

∇A = EA
M∂M + ωAM + i�Ak

lYl
k. (10)

The 2D, N = 4 curved superspace is locally parametrized by the coordinates zM =
(xm, θμi, θ̄μ

i) with the Grassmann variables θμi and θ̄μ
i related by complex conjugation

θ̄μ
i = (θμi)∗; the bosonic coordinates will be also denoted as xm = (τ, σ ). In (10), EA

M

is the inverse of the vielbein EM
A

(
EM

AEA
N = δN

M,EA
MEM

B = δB
A

)
with ∂M = ∂/∂zM ,

ωA the 2D Lorentz connection and �Ak
l is the SU(2) connection. The torsion TAB

C , Lorentz
curvature RAB and SU(2) curvature RABk

l superfields are defined by (1)–(6) and

[∇A,∇B} = TAB
C∇C + RABM + iRABk

lYl
k. (11)

The action of the local 2D Lorentz generator M and of the local SU(2) generator Yk
l on the

spinor covariant derivatives are the following (Ykl = Yk
pCpl):

[M,∇αi] = 1
2 (γ 3)α

β∇βi,
[
M,∇α

i
] = 1

2 (γ 3)α
β∇β

i, (12)

[Ykl,∇αi] = 1
2Ci(k∇βl),

[
Ykl,∇α

i
] = − 1

2δi
(k∇βl). (13)

It is worthy to recall that the consistency of the Bianchi identities constructed from the
commutator algebra above requires the conditions [1]:

∇α
iB = 0, ∇αiB = −2Cij (γ

3)αβ�βj , (14)

∇αiG = �αi, ∇αiH = i(γ 3)α
β�βi, (15)

∇α
i�βj = iCij (γ 3γ a)α

β∇aB, (16)

∇αi�
βj = 1

2δα
βδi

j [R − 2G2 − 2H 2 − 2BB] + i(γ 3)α
βF i

j (17)

+ iδi
j (γ a)α

β(∇aG) − δi
j (γ 3γ a)α

β(∇aH). (18)

The component gauge fields occur in the above supertensors in the following manner4:

R| = εab{Rab(ω̂) + [2i(γ 3γa)αβψb
αi�

β
i + h.c.]

+ 4φα
γ (γ 3)γβψa

αiψb
β

i − 2[CijBψa
αiψbα

j + h.c.]},
�αi | = εab

{
ψab

βi(γ 3)β
α − iψa

βiφβ
γ (γ 3γb)γ

α + iCijBψa
β

j (γb)β
α
}
,

Fi
j | = εab

{
Fab(A)i

j − 2i(γa)αβ

[
ψb

αj�
β

i + ψb
α

i�
βj − 1

2δ
j

i

(
ψb

αk�
β

k + ψb
α

k�
βk

)]
− 4φαβ

[
ψa

αjψb
β

i − 1
2δ

j

i ψa
αkψb

β
k

]
− 2(γ 3)αβ

[
B(Cikψa

αkψb
βk − 1

2δ
j

i Cklψa
αkψb

βl
)

+ B
(
Cjkψa

α
iψb

β
k − 1

2δ
j

i C
klψa

α
kψb

β
l

)]}
, (19)

4 Given a superfield �(τ, σ, θ, θ̄), we denote as usual with �| := �|θ=0 the field obtained by setting to zero all the
Grassmanian coordinates.
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where εab Rab(ω̂) is the usual two-dimensional curvature in terms of the inverse of the vielbein
ea

m and of the Lorentz connection ω̂a; εabψab
βi is the gravitini field strength; εabFab(A) is

the SU(2) field strength function of ea
m and of the SU(2) connection Aak

l [1]. The component
gauge fields ea

m, ω̂a, Aak
l are easily related to the gauge superfields EA

M, ωA, �Ak
l in (10)

by using standard Wess–Zumino gauge reduction techniques [18, 19].

3. Defining a closed 2D, N = 4 super two-form

In this section we are going to present a new closed 2D, N = 4 super two-form defined in
terms of an unconstrained scalar chiral superfield. The result contained in theorem 1 is crucial
to build the measure of the local superspace integration theory for 2D, N = 4 supergravity
theories as we will see in section 4.

The work in [21] established that the fourth-order spinorial derivatives operator D(4),
defined by

D(4) = [∇(2)αβ − 2B(γ 3)αβ]∇(2)
αβ , (20)

is the chiral projection operator satisfying

∇ i
γD(4)� = ∇ i

γ [∇(2)αβ − 2B(γ 3)αβ]∇(2)
αβ � = 0 (21)

for any general scalar superfield �. We note that the derivation of (20) and (21) given in [21]
follows solely from algebraic manipulations of the derivatives that appear in (2).

In a later section we will exploit the fact that a closed 2D, N = 4 super two-form is
sufficient to determine the local integration measure for an appropriate curved superspace.
For this purpose it is necessary to define the components of a 2D, N = 4 super two-form. The
general framework for the construction of such forms was presented some time ago [22] which
implies for the present consideration we should introduce a super two-form whose component
superfields may be written in the form JAB = (

Jαiβj , Jαiβ
j , Jα

i
β

j , Jγ ka, Jγ
k
a, Jab

)
. We refer

the reader to [18, 22] for the notations we adopt in the use of super p-forms. In general, given
a super p-form �, described by the component superfields �A1···Ap

, its exterior derivative
F = d� has components FA1···Ap+1 given by 5

FA1···ApAp+1 = 1

p!
∇[A1�A2···Ap+1) − 1

2((p − 1)!)
T[A1A2|

B�B|A3···Ap+1). (22)

The superform � is closed if FA1···Ap+1 = 0. We can now state a theorem.

Theorem 1. If U is a chiral superfield, i.e. satisfies ∇ i
αU = 0, the components defined by

Jαiβ
j = 0,

Jαiβj = 2(γ 3)αβ∇(2)

ij U − CαβCij (γ
3)γ δ∇(2)

γ δ U,

Jα
i
β

j = 2(γ 3)αβ∇(2)ijU − CαβCij (γ 3)γ δ∇(2)
γ δ U,

Jγ ka = − i

3
εab(γ

b)γ
δ∇δ

p∇(2)

kp U,

Jγ
k
a = − i

3
εab(γ

b)γ
δ∇δp∇(2)kpU,

Jab = −1

8
εab

[(∇(4) − 2B̄(γ 3)αβ∇(2)
αβ

)
U +

(∇(4) − 2B(γ 3)αβ∇(2)

αβ

)
U

]
,

(23)

describe a closed 2D, N = 4 super two-form with respect to the supergravity commutator
algebra in equations (1)–(6).

5 With [· · ·) we denote the complete graded symmetrization of indices.
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The superfield Ū := (U)∗ is antichiral ∇αiŪ = 0. In writing these results, we have introduced
second- and fourth-order spinorial derivative operators via the equations

∇(2)
αβ = 1

2Cij [∇αi∇βj + ∇βi∇αj ], ∇(2)
ij = 1

2Cαβ
[∇αi∇βj + ∇αj∇βi

]
,

∇(2)
αβ = 1

2Cij

[∇α
i∇β

j + ∇β
i∇α

j
]
, ∇(2)ij = 1

2Cαβ
[∇α

i∇β
j + ∇α

j∇β
i
]
,

∇(4) = 1
3∇(2)kl∇(2)

kl , ∇(4) = 1
3∇(2)kl∇(2)

kl .

(24)

The proof of the theorem involves using the above equations to show that the Bianchi
identities for this two-form vanish. This is relegated to an appendix. We next note that the
chiral superfield U above may be replaced using the result from (21) according to U = D̄(4)L
(Ū = D(4)L̄ = (D̄(4)L)∗) where the 2D, N = 4 superfield L, (L̄ := (L)∗), is not subject to
any algebraic nor differential restrictions. Stated another way, this implies that an arbitrary
2D, N = 4 superfield L can be used to create a closed super two-form whose components
are defined by JA B above. We conclude with a result that will be needed in the next section.
Defining the component vierbein Em

a| = em
a

(
em

aea
n = δn

m, ea
mem

b = δb
a

)
, and the gravitini

Em
αi | = −ψm

αi
(
ψa

αi = ea
mψm

αi
)
, Em

α
i

∣∣ = −ψ̄m
α
i

(
ψ̄a

α
i = ea

mψ̄m
α
i

)
, by a general result

given in [2, 18] taking the limit as all Grassmann coordinates go to zero one obtains

εabJab| = εabJab| + 2εab
(
ψa

αiJαib

∣∣ + ψ̄a
α

iJα
i
b

∣∣) + 2εabψa
αiψ̄b

β
jJαiβ

j
∣∣

+ εabψa
αiψb

βjJαiβj

∣∣ + εabψ̄a
α

iψ̄b
β

jJα
i
β

j
∣∣, (25)

where Jab| describe an ordinary space closed two-form.

4. A 2D, N = 4 density projection operator

It remains for us to calculate the explicit form of the density projection operator (that we will
denote by �(4)) which is the main purpose of this work. As we are going to describe in this

section, by using �(4) and the chiral projector D(4)
, we can build the integration measure of

component actions in 2D, N = 4 minimal supergravity.
As noted by Siegel [17], the ‘secret’ of the ectoplasmic approach is to realize that the

integration theory of superspace can be totally cast into the language of closed super-forms.
Indeed it was argued in the work of [2] that the requirement that the topology of a superspace
be totally determined by the topology of its purely bosonic sub-manifold naturally provides a
reason for the appearance of super-forms in constructing integration measures of superspace.

In the work of [18], it was noted that the derivation of component results follows efficiently
from replacing the integration of fermionic coordinates by a process using first application of
the superspace covariant derivative followed by taking the limit as the Grassmann coordinates
are taken to zero. In the 2D, N = 4 case, this is described in the form of an equation∫

d2σ d4θ d4θE−1L →
∫

d2σ
1

2
e−1[�(4)D(4)L + h.c.]| (26)

in terms of two differential operators, �(4) (the density projection operator) and D(4) (the
chiral projection operator) which may be expanded as

�(4) =
4∑

i=0

b(4−i) · [(∇) × · · · × (∇)4−i], (27)

D(4) =
4∑

i=0

a(4−i) · [(∇) × · · · × (∇)4−i], (28)

5
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in terms of some field-dependent coefficients a(4−i) and b(4−i) and powers of the spinorial
superspace supergravity covariant derivatives ∇α i and ∇α

i . In (26), we have the expressions
E−1 = [

Ber EA
M

]−1
and e−1 = [

det ea
m
]−1

which are functions respectively of the
supervielbein and the component vielbein and d2σ denotes the measure over the two-
dimensional bosonic space. A further consequence of (26)–(28) is that the superfield
Lagrangian L need not be hermitian as it is the linear combination of terms that appear
in the action formula that must satisfy this requirement. In the present context these spinorial
superspace supergravity covariant derivatives satisfy the relations given in section 2.

The basis for the ectoplasmic derivations of local supergravity measures and projections
operators lies in a proposition for how to integrate an arbitrary super p-form. This was
proposed in the work of [2]. Given a curved superspace with NB bosonic coordinates (labeled
by m indices) and NF fermionic coordinates (labeled by μ indices), we have

Proposition 1. If JA1···Ap
is a closed super p-form superfield whose Bianchi identities vanish

and d�m1···mp is a co-chain of dimension p � NB (where NB is the dimensionality of the bosonic
subspace), then the integral of the super p-form over the co-chain is given by

S(d�|J ) ≡ (p!)−1
∫

d�a1···apJ (p)
a1···ap

∣∣∣∣. (29)

and this is a supersymmetrical invariant.

In (29) we note that the quantity J (p)
a1···ap

∣∣ is related to the super p-form JA1···Ap
via(

Ja1···ap

∣∣) ≡ [
J (p)

a1···ap

∣∣ + λ(p,1)ψ[a1|
α1

(
Jα1|a2···ap]

∣∣) + λ(p,2)ψ[a1|
α1ψ|a2|

α2
(
Jα1α2|a3···ap]

∣∣) · · ·
+ λ(p,p)

[
ψa1

α1 · · · ψap

αp

](
Jα1α2···αp

∣∣)], (30)

where ψa
α denotes the gravitino. The quantities J (p)

a1···ap

∣∣ and coefficients λ(p,1) · · · λ(p,p) are
determined by taking the limit as the Grassmann coordinates go to zero in Ja1···ap

. In the 2D,
N = 4 case with Jab the component of a super two-form, equation (25) informs us about the
λ-coefficients.

We next observe that upon setting p = NB the proposition takes the form

S(d�|J ) =
∫

dNB x e−1 1

NB!
ε

a1···aNB J (NB)
a1···aNB

∣∣∣∣, (31)

where e−1 denotes the determinant of the vielbein for the bosonic subspace. In the case
considered in this paper, we thus reach the result

S(d�|J ) =
∫

d2σ e−1 1

2
εabJ (2)

ab

∣∣∣∣
=

∫
d2σ e−1

[
1

2
εabJab

∣∣ − εab
(
ψa

αiJαib

∣∣ + ψ̄a
α

iJα
i
b

∣∣) − εabψa
αiψ̄b

β
jJαiβ

j
∣∣

− 1

2
εabψa

αiψb
βjJαiβj

∣∣∣∣ − 1

2
εabψ̄a

α
iψ̄b

β
jJα

i
β

j

∣∣∣∣
]
. (32)

More explicitly the equations in (23) are expressed as

Jαiβ
j = 0,

Jαiβj = 2(γ 3)αβ∇(2)

ij [∇(2)εκ − 2B̄(γ 3)εκ ]∇(2)
εκ L

−CαβCij (γ
3)γ δ∇(2)

γ δ [∇(2)εκ − 2B̄(γ 3)εκ ]∇(2)
εκ L,

Jα
i
β

j = 2(γ 3)αβ∇(2)ij [∇(2)εκ − 2B(γ 3)εκ ]∇(2)
εκ L

6
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−CαβCij (γ 3)γ δ∇(2)
γ δ [∇(2)εκ − 2B(γ 3)εκ ]∇(2)

εκ L,

Jγ ka = − i

3
εab(γ

b)γ
δ∇δ

p∇(2)

kp [∇(2)εκ − 2B̄(γ 3)εκ ]∇(2)
εκ L,

Jγ
k
a = − i

3
εab(γ

b)γ
δ∇δp∇(2)kp

[∇(2)εκ − 2B(γ 3)εκ
]∇(2)

εκ L,

Jab = −1

8
εab

[∇(4) − 2B̄(γ 3)αβ∇(2)
αβ

]
[∇(2)εκ − 2B(γ 3)εκ ]∇(2)

εκ L

−1

8
εab

[∇(4) − 2B(γ 3)αβ∇(2)

αβ

]
[∇(2)εκ − 2B̄(γ 3)εκ ]∇(2)

εκ L. (33)

Finally, the results in (33) can be substituted into equation (32) to reach the main
result of this presentation. Given an arbitrary 2D, N = 4 superfield Lagrangian L, a local
supersymmetrical invariant is given by

S =
∫

d2σ e−1�(4)D̄(4)L
∣∣∣∣ + h.c.

=
∫

d2σe−1

{
1

8
∇(4) − 1

4
B̄(γ 3)αβ∇(2)

αβ +
i

3
ψ̄a

γ
i(γ

a)γ
δ∇δj∇(2)ij

− εabψ̄a
α

iψ̄b
β

j (γ
3)αβ∇(2)ij +

1

2
εabψ̄a

α
iψ̄b

β
jCαβCij (γ 3)γ δ∇(2)

γ δ

}

× [∇(2)εκ − 2B(γ 3)εκ ]∇(2)
εκ L

∣∣∣∣ + h.c. (34)

in the presence of the off-shell supergravity theory described in section 2.

5. Conclusion

With this present work, we have completed the task of developing an efficient local superspace
integration theory for two-dimensional theories that possess eight real supercharges. We
believe that the result given in (34) is unexpectedly elegant and simple given that the general
form of the eighth-order spinorial differential operator defined by (26), (27) and (28) could,
in principle, take a more complicated form. Perhaps one of most surprising features of this
derivation has been the use of the closed 2D, N = 4 super two-form used in theorem 1
The superfield U that appeared in equation (23) is not required to describe any irreducible
supermultiplet. The only requirement imposed on the superfield U is its chirality.

As proved in [21], the chiral superfield U can be expressed in terms of the chiral projector

D(4)
and an unconstrained superfield L as U = D(4)L. This result has been used in sections 3

and 4. According to the discussion of section 4, the main result of this paper is the computation

of the density projector operator �(4) of (26), (27) and (34), which, together with D(4)
, allows

to define the component supergravity integration measure (34). In deriving for the first time
�(4) we used the ectoplasmic techniques and the new super two-form of theorem 1 (23).

One other point we wish to emphasize is the efficiency of the ectoplasmic approach in
the case we considered here. It would be interesting to re-derive the integration measure (34)
via the normal coordinate expansion technique [7, 15, 16] (in particular using its last version
[15]) even if we do not expect that the latter approach would require shorter computations.
This is especially true considering that in 2D the number of Bianchi identities to be solved
for a closed super two-form is relatively low. This emphasizes again the important role of
forms as a basis for superspace integration theory as advocated in the ectoplasmic approach.
The success of this also points to the generality of using this as a tool in all cases to derive
superspace local integration measures.
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Note also that here we focused on the 2D, N = 4 minimal superspace geometry of [1]
as described in section 2. In general, it is known that there could exist different off-shell
superspace supergravities. We expect that the ectoplasm paradigm and the results of our
paper can be extended to any covariant superspace formulation of 2D, N = 4 supergravity.
For example, in the first paper of [1] a variant central charge formulation of the minimal
multiplet was given; once noted that the Lagrangian L in (34) has to be neutral for the
central charges, one can see that the results of our paper apply without modifications to the
variant formulation. Moreover, recently a new extended covariant formulation of 2D, N = 4
supergravity in superspace was given [24]. The ectoplasm techniques to compute the chiral
action in components apply straightforwardly if one consider the geometry of [24] even if in
this case longer computations are expected due to the more involved structure of the torsion
multiplet. Other superspace formulations of 2D, N = 4 supergravity [25] are known in the
bi-harmonic superspace of [26]. Being those superspace supergravities based on a prepotential
approach, the definition of a covariant components reduction is not clear. However, on the
ground of the related bi-projective formalism [27], recently extended to covariantly study
2D, N = 4 matter-couplet supergravity, it would be of interest and well defined to find by
using ectoplasm techniques, the bi-projective density operator analogously to the chiral action
studied here.

‘Where the senses fail us, reason must step in.’
Galileo Galilei
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Appendix A. consistency of Bianchi identities and constraints for two-form

In this appendix, we will present the explicit proof that the Bianchi identities associated with
the results in (23) imply that it is a closed 2D, N = 4 super two-form. We begin by writing an
ansatz for the lowest components of a 2D, N = 4 super two-form under the assumption that
these component should

(a) be linear in a (anti)chiral superfield U (Ū); ∇α
iU = 0 (∇αiŪ = 0),

(b) depend on the superspace supergravity covariant derivative,
(c) be local functions of the superspace supergravity field strengths B, B, G and H.

Under the previous assumptions we will begin with an ansatz given by6

Jαiβj = a(γ 3)αβ∇(2)

ij Ū + bCαβCij (γ
3)γ δ∇(2)

γ δ Ū + CαβCijF Ū, (A.1)

Jαiβ
j = 0, Jα

i
β

j = −(Jαiβj )
∗, (A.2)

6 The ansatz we are using can also be guessed by (i) considering the flat 4D, N = 2 ‘chiral’ closed super four-form
introduced in [23]; (ii) performing a dimensional reduction of the 4D, N = 2 super four-form to derive a 2D, N =
4 closed super two-form; (iii) extending the resulting dimension-1 components of the flat 2D, N = 4 two-form to
the curved case by modifying the flat derivatives to the curved covariant derivatives and by adding torsion-dependent
terms.
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where

F = F(B, B̄,G,H) = b1B + b2B̄ + gG + hH, (A.3)

and a, b, b1, b2, g, h are constants to be fixed.
The task is to study the Bianchi identities that derive from the closure of the two-form J :

dJ = 0, ⇐⇒ 0 = 1
2∇[AJBC) − 1

2T[AB|DJD|C), (A.4)

with JAB = (
Jαiβj , Jαiβ

j , Jα
i
β

j , Jγ ka, Jγ
k
a, Jab

)
and the lowest components satisfying (A.1)–

(A.3).
Substituting the results of (A.1), (A.2) into the identity (A.4) with A = αi, B = βj, C =

γ k one obtains

0 = a(γ 3)βγ

[∇αi,∇(2)

jk

]
U + a(γ 3)γα

[∇βj ,∇(2)

ki

]
U + a(γ 3)αβ

[∇γ k,∇(2)

ij

]
U

+ bCβγ Cjk(γ
3)δρ

[∇αi,∇(2)

δρ

]
U + bCγαCki(γ

3)δρ
[∇βj ,∇(2)

δρ

]
U

+ bCαβCij (γ
3)δρ

[∇γ k,∇(2)

δρ

]
U + Cβγ Cjk(∇αiF )U + CγαCki(∇βjF )U

+ CαβCij (∇γ kF )U, (A.5)

where we have used the fact that Ū is antichiral to write this. At this point, there are two
useful identities to note

[∇αi,∇(2)

ij

]
U = (−2iCi(j (γ

c)α
δ∇c∇δk))U (A.6)

[∇αi, (γ
3)δρ∇(2)

δρ

] = (−4iεbc(γb)α
β∇c∇βi)U (A.7)

which shows that in principle there are terms containing spacetime derivatives in (A.5). In
order to satisfy the Bianchi identity, two sets of conditions are required:

(a) a = −2b and

(b) b1 = b2 = g = h = 0.
(A.8)

For simplicity we also set

a = 1. (A.9)

The next Bianchi identity encountered takes the form

0 = ∇ i

αJβj γ k + Tα
i
βj

aJγ ka + Tα
i
γ k

aJβj a. (A.10)

The result in (A.1), subject to (A.8), (A.9), can be substituted into this equation. To satisfy
this, it is useful to use the following identities:

∇αi∇(2)

jk Ū = − 1
3Ci(j∇p

α∇(2)

k)pU,

∇αi∇(2)

βγ Ū = 1
3Cα(β∇p

γ )∇
(2)

ip U − 4
3BCα(β(γ 3)γ )

δ∇δiU + 1
3B(γ 3)(αβ∇γ )iU, (A.11)

(γ 3)βγ ∇αi∇(2)

βγ Ū = − 2
3 (γ 3)α

γ ∇p

γ ∇(2)

ip U.

Then, to completely satisfy (A.10) one has to impose

J γka = − i

3
εab(γ

b)γ
ρ∇ρ

p∇(2)

kp Ū . (A.12)

Note that it holds

J γ
k
a = −(J γ ka)

∗ = − i

3
εab(γ

b)γ
ρ∇ρp∇(2)kpU. (A.13)

9
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We can continue our deliberations by considering the Bianchi identity given by

0 = ∇aJβjγ k + ∇βjJγ ka + ∇γ kJβj a − Taβj
δlJδlγ k − Taγ k

δlJδlβj , (A.14)

and into this are substituted the results (A.1), (A.8), (A.9) and (A.12). When this is done, a
differential equation on U of the form

0 = ∇a

(
2(γ 3)βγ ∇(2)

jk − Cβγ Cjk(γ
3)δρ∇(2)

δρ

)
U

− i

3
∇βj

(
εab(γ

b)γ
δ∇δ

p∇(2)

kp U
) − i

3
∇γ k

(
εab(γ

b)β
δ∇δ

p∇(2)

jp U
)

+
i

2
δl
jφβ

ρ(γa)ρ
δ
(
2(γ 3)δγ ∇(2)

lk − Cδγ Clk(γ
3)ρτ∇(2)

ρτ

)
U

+
i

2
δl
kφγ

ρ(γa)ρ
δ
(
2(γ 3)δβ∇(2)

lj − CδβClj (γ
3)ρτ∇(2)

ρτ

)
U (A.15)

emerges. Further progress is possible by using the identity{∇αi,∇p

δ ∇(2)

kp

}
U = (

3i(γ a)αδ∇a∇(2)

ik − 3iCik(γ
a)α

ρ∇a∇(2)

δρ

+ 3
2Cikφ

τ
δ(γ

3)ατ (γ
3)ρβ∇(2)

βρ − 3φαδ∇(2)

ik

+ 6CikCαδ�
βp∇βp + 6Cik(γ

3)αδ(γ
3)βρ�β

p∇ρp

)
U. (A.16)

This result is substituted into (A.15) and after some algebra, the �-dependent terms are seen
to cancel leaving

0 = (
2(γ 3)αγ ∇a∇(2)

ik − Cαγ Cik(γ
3)δρ∇a∇(2)

δρ − 2(γ 3)αγ ∇a∇(2)

ik + CikCαγ (γ 3)δρ∇a∇(2)

δρ

− iεabφβδ(γ
b)αγ Cβδ∇(2)

ik − iφβδ(γ
3)βδ(γa)αγ ∇(2)

ik

+ iεabφα′δ(γ
b)αδC

α′δ∇(2)

ik + iφα′δ(γc)αδ(γ
3)α

′δ∇(2)

ik

)
U (A.17)

which is clearly identically satisfied.
There is a second dimension-2 Bianchi identity of the form

0 = −∇α
iJγ kb − ∇γ kJα

i
b + Tbγ k

δ
lJδ

l
α

i + Tbα
iδlJδlγ k + Tγkα

icJcb. (A.18)

One may substitute from results derived previously to cast this into the form of

2iδi
k(γ

c)αγ Jbc = i
(

1
3εbc(γ

c)γ
ρ∇α

i∇ρ
p∇(2)

kp + B(γb)αγ ∇(2)i
k − 1

2Bδi
k(γ

3γb)αγ (γ 3)ρτ∇(2)

ρτ

)
U

−∇γ kJα
i
b + Tbγ k

δ
lJδ

l
α

i , (A.19)

and progress is achieved in analyzing this identity by noting that it holds

∇α
i∇β

k∇(2)

jk U = (
1
2Cαβ∇(2)ik∇(2)

jk + 1
2Cik∇(2)

αβ ∇(2)

jk − 2B(γ 3)αβCip∇(2)

pj

)
Ū . (A.20)

One other identity tells us

∇(2)

αβ ∇(2)

ij Ū = −2B(γ 3)αβ∇(2)

ij U, (A.21)

so that (A.20) becomes

∇α
i∇β

k∇(2)

jk U = (
1
2Cαβ∇(2)ik∇(2)

jk − 3B(γ 3)αβCip∇(2)

pj

)
U

= (
1
4δj

iCαβ∇(2)kl∇(2)

kl − 3B(γ 3)αβCip∇(2)

pj

)
U

= (
3
4δj

iCαβ∇(4) − 3B(γ 3)αβCip∇(2)

pj

)
U, (A.22)

where on the first term we have used a sequence of identities (see also the final appendix).
The final line of (A.22) can now be substituted into (A.19) to yield after a bit of algebra

2iδi
k(γ

c)αγ Jbc = i
(− 1

4εbc(γ
c)αγ δi

k∇
(4)

+ 1
2Bεbcδ

i
k(γ

c)αγ (γ 3)ρτ∇(2)

ρτ

)
U

−∇γ kJα
i
b + Tbγ k

δ
lJδ

l
α

i . (A.23)
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Finally this equation informs us that

Jab = εab

(− 1
8∇(4)

+ 1
4B(γ 3)αβ∇(2)

αβ

)
U + h.c. (A.24)

There remains one final Bianchi identity of the form

0 = ∇αiJbc − ∇bJαic + ∇cJαib + Tαib
DJDc + Tαic

DJDb − Tbc
δlJδlαi ,

0 = εab
(∇αiJab + 2∇aJbαi − 2Tαia

δlJδlb − 2Tαia
δ
lJδ

l
b − Tab

δlJδlαi

)
.

(A.25)

To prove that this identity is satisfied requires a calculation of some length. The key to its
satisfaction requires one final identity

[∇αi,∇(4)
]Ū =

(
−8i

3
(γ a)α

ρ∇a∇ρ
p∇(2)

ip − 8iBεbc(γ
b)α

β∇c∇βi

+
8

3
φα

γ ∇γ
p∇(2)

ip + 8�α
l∇(2)

il

)
U (A.26)

that is valid for the supergravity covariant derivative acting on an antichiral scalar superfield
such as Ū .

Other Bianchi identities, not explicitly mentioned here, are identically solved by complex
conjugation of the results obtained in this section.

Appendix B. Miscellaneous identities

For the reader’s convenience, here we also collect some useful formulas used in the derivations
provided in this paper and especially in appendix A (we recall that Ū is antichiral)

∇α
i∇β

j = 1

2
Cαβ∇(2)ij +

1

2
Cij∇(2)

αβ + BCαβCijM − B(γ 3)αβY ij , (B.1)

[∇αi,∇(2)

jk

]
U = −2iCi(j (γ

c)α
δ∇c∇δk)U, (B.2)

[∇αi,∇(2)

δρ

]
U =

(
−2i(γ c)α(δ∇c∇ρ)i − G(γ 3)α(δ(γ

3)ρ)
γ ∇γ i + GCα(δ∇ρ)i

− i

2
HCα(δ(γ

3)ρ)
τ∇τ i +

i

2
H(γ 3)α(δ∇ρ)i − iH(γ 3)δρ∇αi

)
U, (B.3)

[∇αi, (γ
3)δρ∇(2)

δρ

]
U = −4iεbc(γb)α

β∇c∇βiU, (B.4)

∇αi∇(2)

jk U = −1

3
Ci(j∇α

p∇(2)

k)pU, (B.5)

∇αi∇(2)

βγ U = 1

3
Cα(β∇γ )

p∇(2)

ip U − 4

3
BCα(β(γ 3)γ )

δ∇δiU +
1

3
B(γ 3)(αβ∇γ )iU, (B.6)

(γ 3)βγ ∇αi∇(2)

βγ U = −2

3
(γ 3)α

γ ∇γ
p∇(2)

ip U, (B.7)

∇γ
i∇(2)

αγ U = −∇α
p∇(2)

ip U + 4B(γ 3)α
δ∇δiU, (B.8)

{∇αi,∇δ
p∇(2)

kp

}
U =

(
3i(γ a)αδ∇a∇(2)

ik − 3iCik(γ
a)α

ρ∇a∇(2)

δρ

+
3

2
Cikφ

τ
δ(γ

3)ατ (γ
3)ρβ∇(2)

βρ − 3φαδ∇(2)

ik

+ 6CikCαδ�
βp∇βp + 6Cik(γ

3)αδ(γ
3)βγ �β

p∇γp

)
U, (B.9)
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∇(2)

αβ ∇(2)

ij U = −2B(γ 3)αβ∇(2)

ij U, (B.10)

∇(2)αβ∇(2)

αβ U = −∇(2)ij∇(2)

ij U − 4B(γ 3)αβ∇(2)

αβ U, (B.11)

∇(4)
U := −1

3
∇(2)kl∇(2)

kl U, (B.12)

∇α
i∇β

k∇(2)

jk U =
(

3

4
Cαβδi

j∇
(4) − 3B(γ 3)αβ∇(2)i

j

)
U, (B.13)

∇α
i(∇(2)γ δ − 2B(γ 3)γ δ)∇(2)

γ δ U = 0, (B.14)

[∇αi,∇(4)
]U =

(
−8i

3
(γ c)α

β∇c∇β
k∇(2)

ik − 8iBεab(γa)α
δ∇b∇δi

+ 8�α
j∇(2)

ij +
8

3
φα

γ ∇γ
k∇(2)

ik

)
U. (B.15)

By complex conjugation, the reader can derive an analog set of equations for the chiral
superfield U.
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